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The use of Lie transformation groups in the solution of the 
coupled diffusion equation 
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AbstracL The solutions of coupled. linear and nonlinear, diffusion equarioos in a semi-infinite 
medium, are derived using the method of continuous one-parameter point symmetry gmup 
invariants. Initially, conditions for both classical and non-classical Lie group invariants are 
developed and solutions are derived corresponding to linear coupled diffusion. The non-classical 
invariants are shown to be expressible in terms of a linear parabolic operator. In addition, 
solutions corresponding to constant, impulse and sinusoidally time varjing condition are derived 
from the equations determining classicd group invariance. Nonlinear cases me also considered. 
The classical symmetry groups for any form of diffusion matrix are presented. In addition, the 
point source solution for a power-law form goveming the diffusion matrix is derived. It is a 
natural extension of the scalar analogue. 

1. Introduction 

The mathematical analysis presented in this paper is motivated by the problem of the coupled 
transport of heat, moisture and solute in a vertical column of unsaturated soil and the extent 
to which one-parameter Lie point symmetries may he used in the solution of the resulting 
system of one-dimensional partial differential equations. The need to study the symmetries 
of similar systems involving chemical reaction equations, even in linear form, has been 
expressed by Hill (1992). It is clear, that in such cases both the classical, non-classical and 
hidden symmetries (Guo and Abraham-Shrauner 1993) are not well understood. 

The coupled diffusion discussed here occur in theories presented by Philip and De Vries 
(1957), De Vries (1958) and further discussed by many authors, for example, Jury, Letey 
and Stolzy (1987), where it is known that heat, moisture and solute will be transported under 
gradients of soil temperature, volumetric moisture content and solute concentration. Such 
effects are particularly noticeable under semi-arid or desert conditions where most moisture 
movement takes place in the vapour phase. The resulting simultaneous diffusion equations 
for a semi-infinite medium, describing the vertical transfer of both heat and moisture, in the 
absence of solutes, may he written in the simplified form of Jury, Letey and Stolzy (1987): 

where Y ( x , t )  is a vector ( y i ( x , t ) ]  of soil temperature, moisture content and solute 
concenaation values as a function of soil depth x and time f .  Also, {ei)  is a set of 
orthonormal vectors and A ( Y )  is a non-singular, often diagonally dominant matrix, defining 
the diffusive properties of the soil. 
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Equations in the general form of (1) have been studied by many authors, for example, 
Dayan and Gluekler (1982), Glazunov (1983) and Ghali (1986). However, the resulting 
analyses are usually complex, detailed and wholly numerical and attempts to present analytic 
properties of (I) ,  even in the simplest of terms, are scarce (Baca eta[ 1978, Wiltshire 1992, 
1993). In particular, the linearized form of (1) 

ay azY 
at ax2 

Z(X. f ,  Y, Y ,  Y', Y") = - - A- 0 

where A is constant has not been solved under a wide range of soil surface boundary 
conditions. 

It is our aim here to obtain solutions for these equations, generated by determining the 
one-parameter transformatian groups which leave (1) and (2) invariant. In recent years there 
has been much renewed interest (Chester 1977, Olver 1986, Stephani 1989, Hill 1992) in 
the method, initially developed by Lie, of continuous transformation groups as applied to 
the solution of differential equations. The main reasons for this has been the realization that 
the methodology, originally developed for ordinary differential equations, may be extended 
to the determination of analytic solutions to both linear and nonlinear partial differential 
equations. Clearly, this is an important development especially in the absence of general 
theories on nonlinear systems. 

2. One-parameter Lie point transformations 

Consider the oneparameter Lie point group of transformations defined by 

X I  = f ( x ,  t ,  Y, E )  tl = g ( x ,  t ,  Ys) Yl = H ( x ,  I ,  YE) (3) 

where H ( x ,  t ,  Y, E )  is a vector and where the infinitesimal form of (3) is: 

X I  = x + e&, t, Y) + O ( 2 )  E x + ELX + O ( 2 )  

tl = t + q ( x ,  t ,  Y) + O(E2) I t + €0 + O ( 2 )  

Y) = Y + E T r ( X .  f ,  Y) + O ( 2 )  = Y + €CY + O(c2). 

The infinitesimal generator, L. is defined by 

a a a v = cei- 
ax ayi 

C =F(x,t ,Y)- + q ( X , f , Y ) a t  + T r ( x , t , Y )  . v  

(4) 

and (ei] are orthogonal unit vectors. The link between the global and infinitesimal forms 
is defined by 

with, XI = x ,  f l  = t and Y1 = Y when E = 0. In addition, the condition that the solution 
Y - & x ,  t )  = 0 remains invariant under the transformations (4) is given by 
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Moreover, the prolongation operator may be written as: 

a a 
ax at  

CE = 8- t- q- + T . V +  r x .  vye +rt . v, + r*= . 0,. (8) 

where 

r, = 7r' - Y q '  t- Y' . ( V n  - 8')  - Y'(Y'. V ) t  - Y(Y' . V ) q  

rr = ir - Y ' i  + Y . ( V n  - 0) - Y ' ( Y .  V ) t  - Y(Y . V ) q  

rxx = 7r" + Y' * (ZV7r' - 5") - Y q "  + (Y' . V)% - 2 Y ' ( Y ' .  VC') - ZY(Y'. Vq') 

(9) 

(10) 

-Y'(Y'. v)*g - Y(Y' .  V ) 2 q + Y " . [ V r  - V ( Y ' -  vqY -y'-zy'vc] 
- Z P ( q '  + Y' . V q )  (1  1) 

In cases where the partial differential equations are linear then it follows without loss in 
generality that 8 = E ( x ,  I) ,  q = q(x, f )  and 7r = r ( x ,  t ) Y .  

3. Classical and non-classical symmetry (the linear case) 

The condition for invariance of equation (2) may be found by setting 1382 = 0 with the 
result that 

where [AB]  is the commutator defined by: 

[AB]  = AB - BA. 

The classical symmetry groups may be found by setting the coefficients of Y and partial 
derivatives equal to zero. Thus, it follows from the coefficient of a2Y/arax that q = q( f )  
and from the remaining coefficients of Y and partial derivatives that 

and 
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To find the non-classical symmetry groups it is first necessary to eliminate Y and aY/at 
between equations (2) and (7) and then to use the result to eliminate Y and Y from (13). 
It follows that 

+ (-& -2Ar'+  A<")Y' 

+(2A~'+[rAJ-~A+A2r")Y''+2A~' [((;)'(;)I + ; - (i)'} Y' 

+ [ (:)' ( :I1 A - Y"] = 0 

and so on equating coefficients of Y' and Y" it is found that 
{Q - AQ"]q(Q)-' - (4 - Aq") -2AQ'=O 

( Q - A Q " ] ( Q ) - t A + [ Q A J + 2 A q ' = 0  
where 

5 q = -. r Q = -  
i7 7 

4. Classical symmetry groups for coupled linear diffusion 

Consider now the solution of equations (15) to (17). 
differentiated respectively with respect to t and x to give 

and so on differentiating (16) with respect to x and substituting (22) it is found that: 

Firstly, equation (17) may be 

U&' = Aij - [FA] ZAC"' = -[FA1 (22) 

On substitution in (15) and using (16) it is clear that symmetry may be characterized by a 
five-parameter group, since 

V(f) = a  + !Jt (2.1) 

(25) 
P 
2 

< ( x ,  t )  = A +  - X  - 2Bt 

m ( x ,  t )  = ( K  + ~ x ) r .  
Example (a). !J = 0, K = 0, B = 0. 
In this case the group-invariant transformations are 

and the condition for invariance is: 
x l = x + E h  t l = t + E a  K = Y  

(28) 
ay ay 
a x  at 

A- + a- = 0 j Y = Y(ax - A t )  

so that the solution of the coupled diffusion equation (2) may be written in the form: 
Y ( x ,  t )  = c(ux-hf)% 

( A d  + A ) %  = 0 =+ lAa2 + AI = 0. 

(29) 

(30) 
where 1y and h satisfy 

This corresponds to solutions presented by Wiltshire (1992) for the case when A = iw, 
corresponding to sinusoidal temperature and moisture variation at a soil surface x = 0. 
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Example (b). a = 0, A = 0. p = 0, K = 0, F = 1.  
This case of pure coupled diffusion also corresponds to a constant input at the boundary 
surface. This follows by applying the well known (Bluman and Kumei 1989) invariance 
condition that both the boundary condition and the set of points defining the boundary should 
remain invariant under the one-parameter group of transformations. Thus if Y(0, t )  = a, 
Y ( x ,  0) = b are constant then t = 0 and x = 0 must be invariants of the symmetry group. 
Hence from (4) ~ ( 0 )  = 0 and t (0 ,  t )  = 0. Hence it follows from (24) and (25) that a = 0, 
A = 0 and p = 0. Furthermore, substitution of Y(0, t )  = a. Y(x,  0) = b into (7) gives 
r(0, t) = 0 so that K = 0. 

Thus taking p = 1, and with the aid of (6), the transformation equations are 

and so, applying the initial conditions, XI  = x ;  tl = f ;  yl = Y when E = 0, it may be 
shown that: 

X I  = xefl2 tl = te' yl = Y .  (32) 

The corresponding differential equation (7) governing invariance becomes 

X ~ Y  ay 
2 ax a t  

0 = -- +t-. (33) 

This has the solution Y = Y e ) ,  where s = xt-"2, with the result that the coupled diffusion 
equation (2) becomes: 

d2Y d Y  
2h-++s-=O 

ds2 d s  (34) 

This may be solved by setting: 

Yo + [ A b  - ZlYo = 0 (35) - _  dY - e-bs'/4 
ds 

so that YO is an eigenvector of A-', which means finally: 

Y ( s )  = ce-b , ' zP&ds  + constant. (36) 

This solution is clearly identical in form to the familiar scalar solution. 

Example (c). Impulsive input at the boundary surface. 
In this case Y(x,O) = 6(x )a ,  where a is a constant, so that (0,O) must be invariant 
under the coordinate transformation. Clearly from (4) and (24), when t = 0 then 
~ ( 0 )  = 0 + a = 0, thus t l  = t (1  + fp), so that p = 0. In addition since x = 0 and t = 0 
simultaneously, equations (4) and (25) imply t(0,O) = 0 + h = 0. Finally, on substitution 
of Y ( x ,  0) = 6 ( x ) a  in (7) it follows that r ( x ,  O)Y(x, 0) = t (x .  o)aY/ax j K = 0. 

Hence with ,3 = 0 this case becomes 
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and, with the initial conditions XI = x ;  ti = t ;  Yl = Y ,  define the following transformations: 

XI = x - 2ct tl = t Y, = e*-'(fi-t2t)y. (38) 

Furthermore, the condition for invariance is 

which may be solved with the substitution 

Y ( x ,  I)  = e-bx1/4'K,g(r) + [ b l  - A-']Yo = 0 (40) 

so that Yo is an eigenvector of A-I. Equation (40) also satisfies the coupled diffusion 
equation (2) ,  provided that 

(41) I / Z  - h x ' j t  Y ( x , t ) = t -  e K,. 

This is also identical to the familiar scalar solution when an impulse boundary condition is 
applied at x = 0. 

5. Classical symmetry groups for coupled nonlinear diffusion 

The condition for invariance of equation (1) may be found by setting rCEZ = 0, which 
leads to the relationship 

= (%'. V ) A Y "  + Y ' ( r .  V ) V A Y ' +  Axxx + ( rX.  V ) A Y '  + (Y'. V ) A ~ T ~ .  (42) 

Therefore, on expansion, 

ir - Y'i + Y .  ( V x  - i j )  - Y'(Y.  V ) t  - Y ( Y .  V)q 

= ( x ' .  V)AA-' [Y - (Y' . V A ) Y ' ]  + Y'(7c. V)VAY'  

+ A (x" + Y' . (ZVx' - 5") - Y q "  + (Y' . V ) %  - ZY'(Y'. Ve') 

- 2 Y ( Y ' .  Vq') - Y'(Y' .  V)26 - Y(Y' .  V)Zq - 2Y(?7' + Y' . V q ) }  

+ [Y - (I". V A ) Y ' ] .  [ V x  - VCY' - V q Y  - 2' - ZY'Vfl 

+ ((x' - Y q '  f Y' . (VZ - 5')  - Y ' ( Y ' .  V ) c  - Y(Y' .  V ) q )  . V} AY' 

+ (Y' . V ) A  (d - + Y' . ( V x  - 8') - Y'(Y'. V ) <  - Y(Y' .  V ) q ) ,  

(43) 
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In order to find the classical symmetry groups, the coefficients must be equated to give the 
following conditions: 

( I )  constants: 
(2) Y': 
(3 )  Y :  
(4) 1. Y': 

(5) Y .  Y :  

(6) Y ' ,  Y': 

(7) Y', Y .  Y :  

(8) Y ' ,  Y ' ,  Y' 

(9) Y :  

(IO) Y ,  Y': 

?c = AT" 

-Y'( = AY' . [ZVn' - e"] + (a' . V ) A Y '  + (Y' . V ) A d  
-$Y = (T . VAIA-IY - hYqrt - 2 y Y  

-Y'(Y. V)c = - Z A Y ( Y ' .  07') - (Y . V)cY'  - 2Y(Y'. V): 
- Y $ .  V A Y '  - Y'VAYq'  

-Y(Y,  V)? = -Y . V q Y  
o = -(T. VA)A-'(Y' . V)AY' + Y ' (x .  V)VAY' 

+ A ( Y ' .  V)'T - ZAY' (Y ' .  V) ( '+  (((Y' . V ) T ) .  V ) A Y '  
Alternatively, this may be written as: 
0 = ((Y' . V ) [ ( T .  V A ) A - l ] ) A Y '  + A ( Y ' .  V) 'x  - 2 A Y ' ( Y ' .  V)e' 
0 = - A Y ( Y ' .  V)'q + (Y' . V)AY'VqY 

-Y(Y'. V)qVAY' -  Y ' V A Y ( Y '  * V)q 
0 = - A Y ' ( Y ' .  V)'C + [(Y' , V ) A Y ' ]  . ( V [ Y ' +  2(Y'. V ) 6 )  

-Y'(Y'. V)FVAY' - ( Y '  . V ) A Y ' ( Y ' .  V)g 
0 = -2AYq' 
0 = - 2 A Y Y ' V q .  

It is easy to show. that conditions (4), (5),  (7), (8), (9) and (IO) are automatically satisfied 
whenever q = q( t )  and e = t ( x ,  t ) .  In addition, condition (3) may be substituted into (6) 
with the result that 

A ( Y ' .  V)'T = 0 (44) 

and 

x . V A  = A(2C' - q) .  (45) 

In cases when (26' - $) = 0, and for all A ( Y ) ,  condition (3) gives 

T ( X .  I, Y )  = 0 

5 = 6 ( x ,  t ,  Y )  = - x  + K 

q = q ( x ,  t ,  Y) = yf + S. 

(46) 

(47) 

(48) 

Y 
2 

Alternatively, when (2F' - $) # 0 then (44) is satisfied when 

1 
m . x = - ( Y f P )  (49) 

where m and P are independent of y j .  Hence, using condition (3), it is found that A has 
the particular form: 

A = A n ( y i  + (50) 
i 
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where A is a constant matrix and 
R, = m(2e' - rj). 

In this case it may be shown conditions (1) and (2) will also be satisfied when 

t =t(X,t.Y)=hX+K 

q = q ( x ,  2 ,  Y) = y t  t 6 

Consider, as an example, the source solution of 

ax ax Y = - 

so that 

Y ( x , O )  = yaS(x) 

6 ( h )  = h-'6(x).  
where the Dirac delta function satisfies 

Following the method of Hill (1992), we notice that equations (55) and (56) remain invariant 
under the transformations 

x i  = e'x = e(Cfi++, = e+Y. (58) 

f ( x , t , Y ) = x  q ( x , t , Y ) =  (59) 

It follows that 

i s  a subset of (52) to (54). Using the condition for invariance (7) and (57), the functional 
form of Y ( x .  t )  with the associated similarity variable w is given by 

If we now substitute these into (55) it is found that 

On setting a = 0 it may be shown that (66) has the solution 

where 

p C R i  = 1. 
i 

Furthermore, A and b satisfy the eigenvalue relationship 

This solution is similar in form to a well known scalar solution (Hill 1992). 
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6. Conclusions 

In many previous studies of coupled diffusion, much of the analysis has been numerical 
(for example, Dayan and Gluekler 1982, Glazunov 1983 and Ghali 1986), with almost 
no analytical discussion i n  the literature. In addition, numerical investigation has not 
centred on the extent to which the system is linear or not, even though linear discussion 
can sometimes be adequate. It has been shown here, using the method of continuous, 
classical one-parameter point symmetry, how solutions for linear coupled diffusion with 
three separate boundary conditions are intimately related. Such solutions are shown to be 
natural extensions of the analogous linear scalar equations. It thus follows that an analytical 
sensitivity investigation of the relative importance of the elements of A is now possible for a 
wide range of boundary conditions, including the case of trickle irrigation (Ghali 1986). In 
cases where nonlinearity is important, solutions have been found whenever the coefficients 
of the A involve powers of temperature, moisture content and solute concentrations. This 
form for the A matrix is not unlike that encountered in reality. The solution presented 
as an example corresponds to an impulsive boundary condition at the soil surface and is 
an extension of a similar solution presented for the scalar nonlinear diffusion equation. 
Although the method of group invariance is powerful, its limitations are also transparent, 
especially when dealing with the classical cases of advection diffusion. In addition, it 
appears that there are no hidden symmetries. It may be concluded that a broader class 
of transformation (perhaps Backlund) needs to be considered in order to extract maximum 
analytical information from these equations. 
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